
Pressure oscillations in a chemical garden

J. Pantaleone,1 A. Toth,2 D. Horvath,2 L. RoseFigura,3 W. Morgan,1 and J. Maselko3

1Department of Physics, University of Alaska, Anchorage, Alaska 99508, USA
2Department of Chemistry, University of Szeged, Szeged H-6701, Hungary

3Department of Chemistry, University of Alaska, Anchorage, Alaska 99508, USA
�Received 2 February 2009; published 19 May 2009�

When soluble metal salts are placed in a silicate solution, chemical gardens grow. These gardens are treelike
structures formed of long thin hollow tubes. The growth is driven by the increase in internal pressure from
osmosis. One particular case is examined here, calcium chloride in a solution of sodium trisilicate. We directly
measure the internal pressure of a silicate garden as it grows via a series of relaxation oscillations. From these
observations we deduce the stresses in the membrane and discuss how they influence the growth of tubes. Also
we estimate the critical stress and the average Young’s modulus for the silicate garden’s membrane.
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I. INTRODUCTION

When soluble metal salts are placed in solutions contain-
ing silicates, hollow treelike structures grow. These three-
dimensional precipitation structures have many names: sili-
cate gardens, chemical gardens, or crystal gardens. They
have been known about for centuries �1�, and these days are
a common science education activity �2�. Similar tubular pre-
cipitation structures abound in nature: speleothems such as
helicities and “soda straws” �3,4�, chimneylike structures
deep in the ocean at hydrothermal vents �5�, and the hollow
silicate tubes observed in the formation of Portland cement
�6�. Despite their common occurrence in nature, there are
still many unknowns concerning how these tubular precipi-
tation structures grow.

When the metal salt is first placed in the silicate solution,
it dissolves and a permeable precipitation membrane forms
instantaneously between the salt and silicate solutions, pro-
vided the concentrations are sufficiently high. The microme-
ter wide membrane is not a uniform material �7,8� since it
separates two entirely different chemical environments: an
acidic metal salt inside and a basic silicate solution outside.
Osmosis causes liquid to flow through the membrane, in-
ward, and toward the concentrated salt solution. This in-
creases the internal pressure, driving the growth of the struc-
ture. The type of structure that grows can vary considerably,
depending on which metal salt is used and the concentration
of the silicate solution �9�. One common pattern produced
under many conditions is a long thin tube. Tubes can form
which are either open on the end �10,11�, closed on the end,
or with a gas bubble on the end �12�.

The closed tubes are a particularly interesting case
�13–17�. For these tubes, as the internal pressure increases,
the stress at the tube end increases until it reaches a critical
value and the membrane there ruptures. Then fluid is ex-
truded through the rupture, and new membrane forms around
the extruded liquid. This cycle can repeat itself several hun-
dred times to produce long twisting tubes. The tubes so pro-
duced typically grow vertically, but horizontal and down-
ward growing tubes have also been observed under different
conditions. In some cases the relaxation oscillation is par-
ticularly violent, causing the entire structure to “twitch” �17�,

i.e., to move a few millimeters through the silicate solution
in about a tenth of a second, once for each cycle.

There are many interesting and poorly understood dy-
namical features concerning the growth of tubes via relax-
ation oscillations. For example, tubes are not the only pos-
sible pattern that can be produced. Sometimes the ruptures
occur at different spots on the membrane instead of always at
the end of the tube. It is not well known exactly what makes
tube growth stable. Similarly, it is still unknown what deter-
mines the tube radius or the oscillation period. For open tube
growth, systematic studies have shown that the tube radius
can be calculated from the flow rate via Poiseuille flow �15�,
however that description is not appropriate for the noncon-
tinuous flow that occurs in closed tubes. A model for tube
growth via relaxation oscillations has been proposed �17� but
has not been systematically tested.

Here we report the results of an experiment to directly
measure the pressure changes within a silicate garden as it
grows. In Sec. II we describe our experimental procedure. In
Sec. III we qualitatively describe our observation. In Sec. IV
we quantitatively describe our observations and estimate
what membrane parameters we can use from the observa-
tions: the elastic constant of the membrane and the critical
stress of the membrane. In Sec. V we summarize the model
previously proposed to describe tube growth from relaxation
oscillations and discuss how our observations correspond
with this model. We also discuss there possible future experi-
ments.

II. EXPERIMENTAL PROCEDURE

We constructed an apparatus that pumped CaCl2 solution
into a silicate solution and then allowed the pressure of the
CaCl2 solution, relative to the atmosphere, to be measured. A
sketch of the apparatus is shown in Fig. 1. The pump used
was a peristaltic pump, a Gilson MiniPuls 3. The relative
pressure sensor is a PASCO PS-2114 with a resolution of 1
Pa and a sampling rate of 20 times per second. The devices
were connected with silicone tubing of inner diameter 2.28
mm. The silicate solution was composed of the following:
120 ml of 2.0 M stock sodium silicate solution, 5.0 ml of 0.6
M HCl, and 125 ml of distilled water. The 1.7 M calcium
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chloride solution was made from calcium chloride dihydrate
and distilled water. The experiments were performed at a
temperature of 20�1 °C.

Our procedure consisted of pumping the calcium chloride
solution into the silicate solution at a relative high rate for a
short period of time, e.g., 2 ml/min for a couple of minutes.
This was done to create an initial structure in the silicate
solution consisting of a few milliliters of calcium chloride
solution surrounded by a precipitation membrane. Then the
pump was turned off and the subsequent pressure fluctua-
tions were observed. At the same time the structure was vid-
eotaped for later analysis. The pump was turned off during
our observations because pressure fluctuations associated
with the pump were clearly observable even at pumping rates
significantly less than the flow rate from osmosis. These
pressure fluctuations from the pump were large enough to
cause noticeable effects on the relaxation oscillations. Thus
the pump was off for all of our observations, unless explic-
itly stated otherwise.

III. QUALITATIVE OBSERVATIONS

We observed changes in pressure, which tends to be of
two types: a “fast” mode with a period of 1–2 s and a “slow”
mode with a period that was an order of magnitude larger.
The slow relaxation oscillations corresponded to ruptures at
different locations on the membrane. The locations, when
they could be identified, appeared to be relatively randomly
distributed across the surface of the initial structure. The long
periods allowed a relatively large amount of fluid to accumu-
late in the structure so that the amount of fluid extruded at
the rupture site was large enough to produce long narrow
filaments of varying length. After many of these slow relax-
ation oscillations the structures somewhat resembled the
form of a porcupine or sea urchin. In contrast, the fast mode
corresponded to tube growth. In this mode the ruptures al-
ways occurred at the tube end. This was a stable mode that,
once started, could go on for hundreds of relaxation oscilla-
tions to produce tubes with a length of several centimeters
and a diameter of about 2.5 mm.

Figure 2 is a plot of some of our data. It shows a couple of
slow mode relaxation oscillations, changing to fast mode re-

laxation oscillations. In our experiments the slow mode os-
cillations had an average amplitude typically around 0.3 kPa,
while for the fast mode it was about 0.02 kPa. To put these
numbers in a physical perspective, the pressure change, �P,
from a change in depth of water of �z is given by

�P = �g�z . �1�

Using the standard density of water this gives that 0.1 kPa
corresponds to the pressure from a column of water 1 cm
high.

The existence of the two modes tells us something about
the conditions necessary for tube growth. In tube growth, the
membrane preferentially ruptures at or near where it ruptured
previously. This implies that “young” membrane is much
more fragile than “old” membrane �17�. One effect that
might contribute to this is an expected continual decrease in
concentration of membrane forming solute inside the tube at
the tube end. However this effect cannot explain the obser-
vation that sometimes a tube will stop growing and the mem-
brane will instead rupture at some other location, with the
first tube never to grow again. Thus a large factor in explain-
ing the stability of tube growth must be that the membrane
strength or thickness grows on a time scale of order the fast
mode period �1–2 s�. However in slow mode, these effects do
not dominate and instead the rupture site is not at the same
location. Our observations suggest a possible reason for this.
In slow mode the rupture sites have a relatively small radius,
and so long thin filaments are emitted. Since the stress in a
membrane is proportional to the curvature, the small fila-
ments tend to have much smaller stresses in their mem-
branes. Thus the smaller radii of the protrusion in slow mode
are enough to compensate for the time it takes the membrane
to strengthen. It thus appears that it takes a relatively large
rupture to initiate stable tube growth.

IV. QUANTITATIVE OBSERVATIONS OF TUBE GROWTH

In this section we focus on the fast relaxation oscillations
associated with tube growth. Several quantitative measure-
ments can be extracted from our observations. From the
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FIG. 1. Sketch of the apparatus used to measure the pressure
fluctuations in the precipitation structure.

FIG. 2. Typical plot of pressure versus time observed in our
experiment. A couple of slow mode oscillations are shown, fol-
lowed by the fast mode, which corresponds to tube growth. Pump-
ing started at t=0 and lasted about 130 s.
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video tape of the structure, we can extract the radius of the
tube and the position of the tube end. From the pressure
measurements, it is observed that each relaxation oscillation
is basically a linear rise followed by a quick drop. The drop
is usually too fast to fully resolve with our pressure detector.
Thus the description of each relaxation oscillation cycle can
be reduced to three independent quantities: dP /dt, the rate of
pressure build up during the cycle, �P= Pmax− Pmin, the pres-
sure change occurring at the drop in pressure, and Pmin, the
minimum pressure during the cycle �which occurs after the
quick drop in pressure�.

A. Observations of Pmin

The tubes in this experiment are observed to grow pre-
dominantly in the vertical direction. This is presumably be-
cause the interior solution is less dense than the exterior so-
lution; so an upward buoyant force acts on the tubes,
producing vertical growth. The density difference can also be
seen directly in the pressure measurements. We have ob-
served that the average pressure usually decreases, while a
vertical tube is growing. Taking Pmin for the reference pres-
sure during a cycle, we plot it versus the height of the tube
�as measured from the bottom of the container� in Fig. 3 for
one continuous observation. The relationship between Pmin
and the height is approximately linear. This behavior can be
easily understood.

When a tube ruptures and fluid emerges out the tube end,
the internal pressure drops until it approximately equals the
external pressures at the rupture site �there can be the occa-
sional, small amount of “overshoot” beyond equal pressure
at the pressure drop, as seen from Fig. 2 at 1815 s, which
presumably occurs because of the inertia of the fluid moving
along the tube�. Then there is no contribution to the internal
pressure from stresses in the membrane, the pressure detector
just gives the pressure from the weight of the liquid above it.
If the detector is at a depth L below the surface of the liquid
and the tube extends a height h above the detector, then the
recorded pressure is just the sum of that from the column
heights �L−h� of external fluid and h of internal fluid,

Pmin = �exg�L − h� + �ingh , �2�

where �ex and �in are the densities of the external and inter-
nal solutions. The slope of the data in Fig. 3, divided by the
acceleration of gravity, g, thus gives us the average density
difference between the internal and external liquids for this
particular tube’s growth,

��ex − �in� = 0.16
g

cm3 . �3�

The measured initial densities of the solutions are �ex
0

=1.21 g /cm3 and �in
0 =1.13 g /cm3. Thus the average den-

sity difference between the liquid in the tube and the external
liquid is much larger than that of the initial solutions.

The volume of the external silicate solution is very large
compared to the amount of calcium chloride solution used,
so the density of the silicate solution does not change signifi-
cantly during the growth of a structure. However the density
of the internal calcium chloride solution is expected to de-
crease as the structure grows because of dilution from osmo-
sis and also because internal solute is used to construct the
tube. Note that both of these effects will be largest toward
the top of the tube, near the tip. That is where the depletion
of internal solute is largest from the reasons just mentioned,
and also that is where buoyant forces will drive the least
dense fluid. Thus it is understandable that the observed den-
sity difference between the liquid in the tube and the external
liquid is much larger than the initial fluid densities.

These observations have important consequences for the
stresses in the membrane. Considering a vertical tube, we
shall divide the stress up into its vertical �longitudinal� and
horizontal �transverse� components, see Fig. 4 for a sche-
matic. For a perfectly vertical rigid tube, open at the end �as
occurs at rupture�, there is no vertical force on the tube end

FIG. 3. Plot of the minimum pressure during the cycle versus
the height of the tube as measured from the bottom of the container.
The data is from one continuous measurement.
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FIG. 4. Schematic showing the stresses in the tube just after
rupture �open tube� and while the internal pressure is increasing
from osmosis �closed tube�. At the top of the closed tube, the inter-
nal pressure is larger than the external pressure by PT, ��=�ex

−�in is the density difference between the external and internal
solutions �see Eq. �3� for measured value�, R is the radius of the
tube, � is the thickness of the tube membrane, and h is the vertical
distance below the tube tip to where the transverse stress is
calculated.
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from the difference in densities. Then the vertical stress in
the tube’s membrane will be zero. Vertical stresses in the
membrane will only be produced by �1� buoyant forces on
nonvertical parts of the tube and by �2� the increase in inter-
nal pressure when the tube is closed. The situation is very
different for the stresses in the horizontal direction. There the
density difference will give rise to a net inward force on the
tube membrane that increases with depth. This force causes a
compressive horizontal stress. In summary, for an open ver-
tical tube the density difference tends to give no vertical
stresses in the membrane but it does produce horizontal com-
pressive stresses which grow larger as one moves away from
the tip of the tube.

When the tube end is closed, the internal pressure in-
creases from osmosis. This creates a positive longitudinal
stress all along the tube and a positive transverse stress near
the tip of the tube �see Fig. 4�. In particular, assuming an
osmotic driven internal pressure increase of 20 Pa �typical
for fast mode oscillations�, and using Eqs. �1� and �3�, we
find that below 1.2 cm from the tube tip the horizontal mem-
brane stresses are purely compressive throughout a cycle. In
the 1.2 cm near the tip, the horizontal stresses alternate in
sign during a cycle. The total tensile stress will clearly be
largest at the tube tip. Since a tensile stress is needed to
rupture the membrane and grow a tube, the density difference
helps to stabilize tube growth. However this cannot be the
only factor in producing stable tube growth since horizontal
tube growth has also been observed for a different metal salt
�17�.

For tubes with a height of several centimeters, the com-
pressive horizontal stresses at the base may be large. In par-
ticular, if the membrane thickness was uniform, then the
compressive stress at the base would be several times larger
than the tensile stresses at the tube tip that produce rupture.
The fact that tubes grow this high �see Fig. 3 for an example�
shows that the membrane is not failing at the base. Thus
either the membrane material has a larger compressive
strength than it does tensile strength or the thickness at the
base is several times larger than the thickness at the tip. In
general, a finite compressive strength would give rise to a
maximum height that tubes could grow. We have not system-
atically searched for this effect, and in fact our typical obser-
vation was that the tubes grew until they reached the surface
of the silicate solution.

B. Observations of dP Õdt

The rise in the pressure during an oscillation cycle, dP /dt,
depends on the rate of liquid flow through the membrane,
dV /dt, and on how the system responds to this increase in
volume. We define a parameter B

dP

dt
=

B

V

dV

dt
, �4�

where V is the volume contained in the membrane and B
parametrizes how the system responds to pressure changes.
The more easily the membrane stretches, the smaller B will
be.

Treating the structure as a pressure vessel �18�, B can be
calculated for simple structure geometries. Making the sim-

plistic approximation that the structure is a uniform tube of
radius R, we have that �17�

B = � 2

5 − 3�
�E�

R
, �5�

where E is the Young’s modulus, � is Poisson’s ratio, and � is
the membrane thickness. This formula makes the simplistic
assumption that the stretching is uniform and linear. When
using this formula to estimate E, we shall take ��0.5, the
value for a perfectly incompressible material that deforms
elastically. Note that while B does depend on the curvature of
the structure it is independent of the length of the tube. Thus
we naively expect B to be a constant as a tube grows.

One way to obtain the parameter, B, is to evaluate Eq. �4�
at a fixed time. The slope of the rise in pressure during a
cycle is dP /dt, and this is easily obtainable from the pressure
measurements. The videotape data gives us dL /dt, the
change in length of the tube, and during those short time
intervals when the tube is growing straight dV /dt can be
calculated directly using

dV

dt
= �R2dL

dt
, �6�

where R is the radius of the tube. The structure volume V can
be calculated from the pumping rate times the time pumped
or estimated from the volume observed in the videotape. Us-
ing the values for these quantities measured at the start of
tube growth and Eq. �4�, we get

B = 40 � 20 kPa. �7�

This is our estimate for the pressure response parameter from
the base of the structure, without any significant tube grow-
ing from it.

Our observations show that, as a tube grows, dP /dt de-
creases significantly in time. For example, Fig. 5 contains
observations of dP /dt for the growth of one tube. For the
data plotted in the figure, dP /dt decreases by a factor of
more than 3. Such a large change is quite surprising because
�1� direct observations of dV /dt, in this experiment and in

FIG. 5. Plot of the inverse of the measured pressure increase
during a cycle, dt /dP, versus time. The data is from the growth of
one tube. Pumping started at t=0 and lasted for a total of 220 s. The
line shown is a fit to the data.
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previous experiments �17�, find that it is approximately con-
stant as a tube grows and �2� the volume of the tube is small
compared to that of the total structure. Thus the pressure
response parameter, B, must change considerably as the tube
grows. In particular, the tube membrane must stretch more
easily than the base membrane.

There are a couple of possible explanations for why the
base membrane is less stretchy than the tube membrane. One
possibility is a difference in membrane thickness between the
initial structure and the growing tube. The measurements of
Pmin versus height showed that the interior liquid in the tube
was significantly less concentrated than the initial pumping
fluid. Thus it is to be expected that the membrane produced
by the less concentrated solution would have a smaller thick-
ness and thus would stretch more easily. Visually, the tube
membrane does appear to be more transparent than the base
membrane. However another possibility is that the mem-
brane is very uneven and has nonlinear elastic properties.
Since, throughout a relaxation oscillation cycle, the bottom
of the structure has large horizontal compressive stresses
while the top of the tube has smaller expansive stresses, non-
linear elasticity would give rise to a variation in B with the
height of the tube. Both effects could be occurring together.

The change in dP /dt with time provides a way to estimate
an effective B for the tube. Assuming constant dV /dt, then
V=V0+ t�dV /dt�. As argued in the previous paragraph, the
evidence indicates that, as the tube grows, the base of the
structure becomes less important for the pressure response of
the system, so V0 is effectively small and the change in the
pressure response can be attributed to a change in the effec-
tive volume. Then Eq. �4� can be rewritten as

1

dP/dt
= � V0

dV/dt
+ t� 1

B
. �8�

The slope of dt /dP versus time, as plotted in Fig. 5, then
yields 1 /B directly. Combining the results of several tubes,
we get

B = 4 � 1 kPa. �9�

This is our estimate for the effective pressure response pa-
rameter of a tube.

For the base structure produced by the initial pumping, it
is typically a lumpy, twisting tube with a value for the aver-
age diameter of about 2R=0.5�0.2 cm. Using Eq. �5�, we
get

E� � 200 � 100
N

m
�10�

for the initial structure produced by pumping. For the grow-
ing tube, we take the average diameter to be 2R
=0.24–0.30 cm and get

E� � 10 � 3
N

m
. �11�

To estimate the Young’s modulus, E, one needs to know the
membrane thickness, �. We have not directly measured � in
this experiment, but we did observe that, for the growing
tube, it was less than or equal to the resolution of our video

camera observations, approximately 100 �m. Others �8�,
working at lower concentrations, have examined dried mem-
branes from silicate gardens using scanning electron micros-
copy and found � values of order 10 �m. Using our values
from Eqs. �10� and �11� and taking ��10–100 �m gives

E � 0.1 – 10 MPa �12�

for our estimate of the elastic modulus of the membrane.

C. Observations of �P

The drop in pressure during a relaxation oscillation is de-
noted as �P. During tube growth, �P is observed to have
large fluctuations from cycle to cycle with the spread in val-
ues comparable in size to the average. Note that this is dif-
ferent than the observations of dP /dt, where the fluctuations
are much smaller. Given the large fluctuations, we divide the
observation of �P’s into three categories: the average value
of the pressure drops, ��P	, the frequency distribution,
dN /d��P�, and the autocorrelation of the �P’s. We shall
discuss each in turn.

The average value of the pressure drops, ��P	, versus
time is plotted in Fig. 6. The data is for the same tube ob-
servations used for Fig. 5. This data was chosen to illustrate
our observations because it is one of our longest observations
of tube growth. Here, several hundred cycles were observed
during the growth of a single tube. The �P for each cycle
was measured, the data was then broken down into groups of
ten, the mean and the standard deviation of the mean were
computed for each group, and the result is shown in the
figure. Note that, aside from the initial few points, the gen-
eral trend in Fig. 6 is that the average value of the pressure
drops is approximately constant in time.

The average value in Fig. 6 �0.01 kPa� is rather small
compared to our other observations of the pressure change
during tube growth. While we observed the pressure change
to be roughly constant for a particular tube’s growth, the
constant value was different for different tubes. Averaging
over all of our observations of tube growth gives ��P	
�0.019�0.005 kPa. We can relate this to the critical stress

FIG. 6. Plot of the average pressure drop during a cycle, �P,
versus time. The data is from the growth of one tube, the same
growth as shown in Fig. 5.
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at the tube end. Treating the tube end as approximately a
hemisphere, the stress in the membrane is given as �17�

	 =
PR

2�
, �13�

where P is the pressure difference across the membrane, R is
the radius, and � is the membrane thickness. Evaluating this
at rupture time, we have

	c�r = 0.013 � 0.004 N/m �14�

for the critical stress, 	c, times the membrane thickness at
rupture time, �r. Taking the ratio of the tube elasticity to the
tube critical stress, Eqs. �11� and �14�, the tube thickness
approximately cancels out. The value so obtained is compa-
rable to that for many materials. Assuming a membrane
thickness of 10–100 �m, as discussed previously, gives

	c � 0.1 – 1 kN/m2 �15�

for our estimate of the critical stress of the membrane.
The qualitative behavior of approximately constant ��P	,

shown in Fig. 6, is quite typical of our observations. While
sometimes there were slow decreases or increases in ��P	
over time, the changes were rather small, much smaller than
the corresponding changes in dP /dt. Note that the period of
the relaxation oscillation is T=�P / �dP /dt�. Thus for the
data shown in Figs. 5 and 6, the period increases by a factor
of more than 3 from the start to the finish of the shown data.
Given the large changes in some quantities, it is quite sur-
prising that ��P	 remains so constant.

Qualitatively, there are two effects that would be expected
to cause ��P	 to evolve over time. First, ��P	 should in-
crease as dP /dt decreases �and T increases� since then the
membrane will have more time to grow thicker. Second, the
concentration of tube building materials at the tube end will
decrease as the tube grows longer �from being used to build
the walls and from osmosis�, decreasing the rate at which
new membrane can form and so decreasing ��P	. Since
��P	 is observed to be constant, the two effects appear to
approximately cancel each other out. The concentration
change at the tube end is difficult to model accurately be-
cause it is sensitive to how the fluid inside the tube mixes,
which is unknown. This makes it difficult to compare the
observed behavior of ��P	 over long times with the predic-
tions of models �17� for the tube building process.

We have also examined the frequency distribution of pres-
sure amplitudes, dN /d��P�. Figure 7 shows the distribution
for the same tube growth as plotted in Figs. 5 and 6. The
shape is similar to that observed in other bursting phenom-
ena, such as popcorn �19�. The shape of the observed distri-
butions are very similar to those reported previously �17� for
the period, T. This is not surprising since �P= �dP /dt�T, and
the spread in dP /dt is typically small. The distribution is
asymmetric, with a longer tail in the direction of larger am-
plitudes. We note that one possible explanation for this
asymmetry is the growth of the membrane during the oscil-
lation cycle. That is, the longer the pressure increases the
thicker or stronger the membrane grows, and consequently it
will rupture at an even larger value of the amplitude. While

this may qualitatively explain some of the skewness of the
distribution, it is difficult to quantify this explanation. This is
because the main source of the spread of the distribution
could be due to several factors, such as fluctuations in radius
due to the rupture geometry, fluctuations in solute concentra-
tion at the tube end, and/or fluctuations in membrane defects
�20�. Because of the many unknowns, we have not tried to
model the distribution.

The distribution of �P values definitely has a large sto-
chastic contribution. However there does appear to also be a
small tendency for a large or long cycle to be followed by
another large or long cycle. To quantify this the autocorrela-
tion of the data

Ak =
1

�n − k�	2

i=1

n−k

��Pi − ��P	���P�i+k� − ��P	� �16�

was calculated. The data was broken up into groups of n
=30 cycles, and the autocorrelation was calculated for each
group. In general, a small positive correlation was found for
one time step, but for larger differences the correlations were
generally consistent with zero. The size of the autocorrela-
tion at 1 time step varied considerably from group to group
but was about A1=0.2�0.1. This is consistent with a previ-
ous analysis �17� looking at the autocorrelation of the peri-
ods.

V. DISCUSSION

A model for the relaxation oscillations that produce tube
growth was proposed in Ref. �17�. The model used a differ-
ence equation to relate one cycle to the next cycle. The fixed
point of the difference equation describes the average prop-
erties of the tube. Here we will briefly summarize the mod-
el’s assumptions that are necessary to describe the fixed
point. We shall drop the � 	 notation that we previously used
to denote an average. Instead, in this section, the period, T,
the tube radius, R, and the rupture pressure difference, �P,
are all average quantities. We shall examine how pressure
measurements can constrain the model.

The stress at the tube end is described by Eq. �13�. As
osmosis drives fluid into the structure, the pressure differ-

FIG. 7. Frequency distribution of �P’s observed during the
growth of one tube. The data is for the same growth as shown in
Figs. 5 and 6.
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ence across the membrane increases and the stress increases
until it reaches a critical value and rupture occurs. To model
how the stress evolves in time, it is assumed that the radius at
the tube end is constant, but this cannot be assumed about
the thickness of the membrane. Tube growth occurs because
ruptures happen at the site of previous ruptures. Since this is
true for vertical and horizontal growing tubes, it tells us that
membranes thickness or strength evolves on a time scale
comparable to or larger than the period of the relaxation
oscillations. Thus the rate at which the membrane grows
thicker or stronger is crucial to understanding why tube
growth is stable. To model this over the short time of a fast
relaxation oscillation, a simple form based on a power law is
assumed;

d�

dt
=




�� , �17�

where � is the membrane thickness, � is the scaling expo-
nent, and 
 is a parameter that depends on the concentration
of the interior and exterior solutions. This equation can be
integrated to give the thickness as a function of time and,
with Eq. �13�, the stress as a function of time.

To describe the radius of the tube end, we need some
information on how the radius is determined by the previous
relaxation oscillation. This depends on the geometry of the
rupture and how fluid is extruded through the rupture. In
slow mode ruptures, small ruptures plus large extrusion vol-
umes produce thin filaments which have small radii and
hence small stresses so they do not rupture again. In fast
mode, which corresponds to tube growth, the ruptures and
radii are consistently larger. Lacking any other information
on what sets the scale of the tube size, it is assumed that the
scale of the tube radius is set only by the amount of fluid
extruded through the rupture site

R = c�dV

dt
T�1/3

, �18�

where T is the oscillation period, dV /dt is the flow rate of
fluid into the structure �a constant over a cycle�, and c is a
dimensionless geometric constant. This form clearly does not
model the slow mode; however it hopefully reflects the situ-
ation for fast mode where a stable process exists. Together,
Eqs. �13�, �17�, and �18� provide a model for the average
relaxation oscillations observables: T, R, and �P. Fluctua-
tions around the average values can be included in the model
�17�, but we do not pursue that here.

The dimensionless parameter c can be calculated by si-
multaneously measuring the tube radius, R, the period, T, the
tube growth rate, dL /dt, and using Eq. �6�. Our observations
in this experiment give

c = � R

�TdL/dt
�1/3

= 1.3 � 0.1. �19�

A previous experiment using pellets of calcium nitrate �17�
found c=1.1�0.1, in agreement with the current observa-
tions.

Using the model we can calculate steady state quantities
such as the period, T, the tube radius, R, or the pressure

change, �P, in terms of the flow rate, dV /dt, the pressure
response parameter, B, the critical stress, 	c, and the mem-
brane growth parameters 
 and �. For example, the average
pressure change is given as

�P = ��� + 1�
�3/�4�+1���2	c

c
��B

V
�1/3�3��+1�/�4�+1�

��dP

dt
�−3/�4�+1�

. �20�

Here we have chosen to express this relation in terms of a
quantity that is easily observable in our experiments, dP /dt,
instead of dV /dt. We would like to use our observations and
this relation to determine some of the model parameters,
such as �. However there is a problem. While a tube grows,
many of these parameters evolve in time. While the evolu-
tion of dP /dt is observable, and the evolution of B /V may be
deduced, the evolution of 
, which depends on the solution
concentration at the tube end, is not directly observable.
Thus it is difficult to test the model from long terms obser-
vations of the growth of a tube.

It should be possible to test the model by inducing varia-
tions over a short period of time. For example, we tried turn-
ing on the pump during tube growth and thus changing
dV /dt and dP /dt. By keeping the period of observation
short, the other parameters �B and 
� should not change
much. However there are also problems with this method.
Most importantly, our observations showed that our pump
induced pressure fluctuations larger than those associated
with tube growth. These fluctuations occurred on longer time
scales, and we tried to minimize their effects; but given their
presence we shall only report our observations as suggestive
of what may be possible with this method. For example, in
one observation we found the average values �P
=20.5�1.3 kPa and dP /dt=21.3�0.5 kPa /s for the 40 s
before turning the pump off and �P=26.8�2.7 kPa and
dP /dt=11.9�0.2 kPa /s for the 40 s after turning the pump
off. Using these observations and Eq. �20�, we find

� = 1.4
− 0.5

+ 0.9.
�21�

This value is consistent with the naive expectation of
gamma=O�1�, from diffusion through the membrane. We
plan on trying different pumping techniques to see if it pos-
sible to find one that does not induce fluctuations in the
pressure. We note that several previous experiments by other
groups have been published where pumping was used to
quantify tube formation in silicate gardens. These experi-
ments used a different pumping technique which we have not
examined. However these groups did not measure the pres-
sure fluctuation from their pumps.

We intend to repeat our experiments using other metal salt
solutions. In particular, with calcium nitrate pellets it was
observed that the tubes grew horizontally �17�. Thus there
must have been only a small density difference between the
interior and exterior solutions. In that case, the pressure dif-
ference across the membrane at the base will not differ sig-
nificantly than that for the tube end. Thus the large stresses
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on the lower parts of the structure that were present in the
current experiment would not be present when the internal
and external solutions have similar density. This would prob-
ably affect how the structure responds to pressure, the B
parameter. Thus observing how dP /dt evolves with time
with similar density solutions would give insight into how
the membrane responds to volume changes when large
stresses are not present.

In future experiments we may try repeating these experi-
ments using different solution concentrations. However our
observations here suggest that the concentration at the tube
end inside the structure differs considerably from the solu-
tion we pumped into the structure. This is not surprising
given that dilution of solute from osmosis and from loss of
material due to tube formation are most pronounced at the

tip. But it may be possible to understand these process better
by varying the concentration of the pumping solution.

Finally, one experiment we intend to pursue is to try and
synchronize the pressure fluctuation to imposed pressure
pulses from a transducer. Indeed, we have already inadvert-
ently observed some synchronization in this experiment
where pressure fluctuation produced by the pump influenced
those produced by tube growth. Synchronizing the relaxation
oscillations to induced pressure pulses may provide a method
for controlling tube growth.
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